

IOBC
www.iobc-wprs.org





## Not for dummies ...



Societal challanges Mechanism of action

Registration

**Efficacy** 

**Patent Disease** 

**Biofungicide Mechanism of action** 

Registration Societal challanges

Registration

Crop protection

**Efficacy** 

**Fermentation** 

**Market** 

**Ecotoxicology** 

**Toxicology** 

Active ingredient Formulation Strategy

Agriculture Microorganism

Regulation

Regulation

**Efficacy** 

**Agriculture** 

**Efficacy Crop protection** Market

Formulation.

**Industry** 

Microorganism

Registration

**Formulation** 

Green

**Crop protection** Societal challanges

**Mechanism of action** Residues

**Patent Bioproduct** 

Safety

**Market** 

Microorganism

**Patent** 

**Biopesticides** 

Regulation

**Crop protection** Agriculture

© IOBC WPRS, www.iobc-wprs.org

**Formulation** 

## Many of them depart, a few arrive...





## Many of them depart, a few arrive...



- Less than 0.1 % of the potentially bioactive microbial biocontrol agents reaches the market (estimation based on scientific journals, 'grey literature', theses)
- Increased research efforts in the last 10 years (especially in India, China, Africa, Central and South America)
- Mainly 'old' active ingredients on the market (identified 30 years ago or more)
- Most are new strains of the same well-known species
- When arrive, quite often less effective than chemical standard

#### Do we know all the reasons?



#### **Economic limiting factors**

- Registration: Costs for registration are often prohibitive (about 1.2-1.5 M€ in Europe, 1 M\$ in USA)
- Narrow market: microbial PPPs often highly specific and limited to organic and mPPPs manufacturing companies used to be small and numerous (90% of the chemical market in 7 companies)

Consequence: cost of mPPPs vs. chemicals is higher and Rol is lower – IS IT STILL TRUE?

HP: Effective mPPP integrated with conventional pesticides to reduce residues on food and for soil applications

**New chemicals = specific, 1-2 treatments/year to prevent resistance** 

#### Do we know all the reasons?



## Limiting factors in the use

- Efficacy: less effective and inconsistent (higher risk of losses and dependence on environmental conditions)
- Knowledge: high technical skills for a successful use; need confirmation in each new environment
- Cost for growers: expensive, complicate, need monitoring

Consequence: mPPPs vs. chemicals are weak and difficult – IS IT REALLY TRUE?

HP: Effective mPPP integrated with conventional pesticides: when there is an advantage vs. chemical and conditions of application are correct

## **Development process**





- At strain level
- Effective (pathogens)

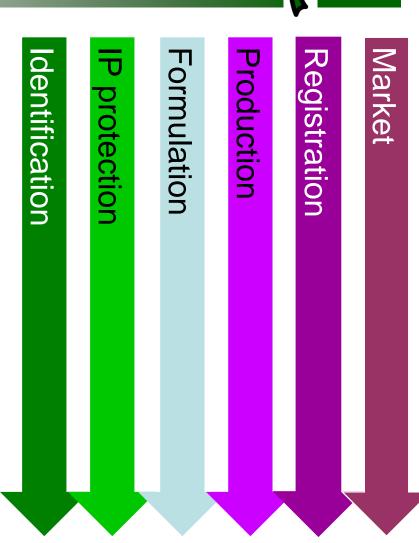
IP protection

- Patent
- Confidentiality

Formulation

- · Shelf life
- Increase field efficacy

Production

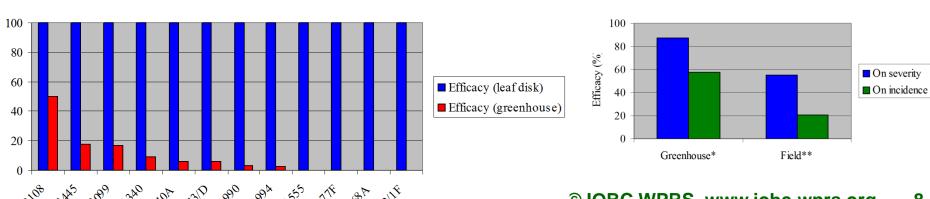

- Industrial scale-up
- Reducing cost of production

Registration

- Tox and Ecotox
- Efficacy

Market

- Integration in IPM
- Label extension




## **Isolation**



## Dual culture or leaf disk screening

- Advantage: high throughput screening
- Bias: Selection of microorganisms producing active metabolites (antibiosis) under the conditions used in the trial (substrate, temperature, RH, etc.)
- Real conditions of use are far from the lab conditions (i.e. conidia need to germinate before being active)



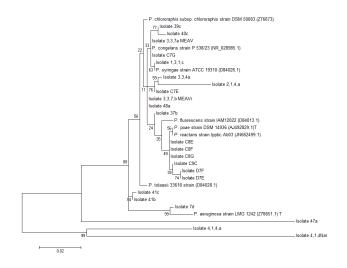
#### **Isolation - Recommendation**



## In planta screening – conditions closed to reality

- Small scale trials on plantlets: good compromise
- Lower number of potential candidates screened
- More robust and trustable results
- Dual culture or leaf disk test only for specific objectives: i.e. to characterize the direct effect against the pathogen, preliminary trials to check the role of metabolites against the pathogen






## Identification



## Correct identification at species level

- Often identification comes after several efficacy trials: with bad surprises...
  - Species related to human pathogens, production of metabolites of concern, plant pathogen, etc.





## **Identification - Recommendation**



## Correct identification at species level

- Identification as early as possible!
- Clear taxonomy molecular level
- If isolated from environment, cross-check with strains of the same species used and biopesticides
- Specific markers for strain identification (later stage, although compulsory for registration)
- Accurate check of the existing literature at species level

## Identification – Recommendation



#### Other useful tips:

- Prefer strains, which does not grow @ > 36°C
- Verify feasibility of a large scale fermentation (cost of substrate, submerged vs. solid state, fermentation yield, time, etc.)
- Check environmental stress tolerance (minimal medium, water, high/low temperature, freezing, desiccation, water activity, UV, etc.)
- Test control efficacy of washed cells vs. culture broth or culture broth + cells

## **IP** protection



# Publishing is 'very urgent'! Evaluation of scientists is based on publications

- Investing research money in isolating new microbial strains is less 'convenient' for the career
- New strains are offered to industries without IP protection
- Patents are filed in very early stage, new strains still need years for industrial development, IP protection is limited to few years (patent expire)
- Patents for strains of 'known' species a more difficult (claims should be narrow or specific thus limiting formulation options and market)

## **IP protection - Recommendation**



# Patent as late as possible (without disclosing any result before)

- Do not publish any preliminary result at conferences, abstracts, in posters; strain in restricted culture collection (Budapest treaty)
- New strains are patentable only if show an advantage to the state of art (include existing strains in you trials)
- Patenting microorganism + formulation may restrict your freedom later

## Patent vs. confidentiality

 Carefully check with patent attorney: i.e. confidentiality is preferable for fermentation process, formulation

## **Formulation**



# Formulation may play an important role (survival, efficacy, metabolites, shelf-life)

- Good microbial active ingredient may be discarded because tested without formulation
- New strains are often offered without formulation to industries (efficacy trials with washed cells or cells in culture broth)
- Changing formulation at a later stage may influence efficacy
- Formulation is often strictly related to the fermentation process





## Formulation - Recommendation



#### Formulation should be finalized as early as possible

- Define the type of application of the MOs (i.e. soil, leaf, postharvest): optimal formulation may vary among uses
- Do not patent formulation if possible or prefer wide claims of formulation
- Check the shelf-life of formulated product as early as possible
- Carry out efficacy trials with the final formulation



## Registration



## Registration is often the last step prior entering the market

- Registration of some promising candidates may be complex and expensive (abandoned in a later stage because not economically sustainable)
- Registration at strain level, however can be easier to register a strain belonging to a well-known species
- Registration of poorly characterized species can be difficult
- Mechanism of action may impact on registration (i.e. antibiotic producer may be more difficult to register

## **Registration - Recommendation**



## Registrability should be checked as early as possible

- Accurate literature review of closely related species
- Strains of well-known species vs. Strains poorly characterized: pros and cons
- Check for presence of metabolites of concern as early as possible
- Strains belonging to poorly characterized species: produce scientific evidences (as many as possible) on fate in the environment, mechanism of action, impact on air, soil, water MOs (good items for publication)

#### **Market**



#### Market needs are not being met (quite often)

- Not always a big market (pathogen/crop) can be satisfied (i.e. pathogens with a fast epidemic growth are not suitable for biocontrol, high risk aversion, low market tolerance for symptoms, etc.)
- Unsuitable mechanism of action against the pathogen (low or inconsistent efficacy)
- Dual culture test can drive to big disappointment in field trials (it is a suggestion not a recommendation)
- Most of the registered strains have been tested against the most important pathogens ('no publication' does not mean 'no test', most frequently means 'negative result')

## **Market - Recommendation**



## When looking for a market (pathogen/crop)

- Define the way of application, the most suitable mechanism of action, identify frequent environmental conditions on the crops: screening for new strains should start form here
- Be wise, but courageous: we need new species on the picture
- Prefer mechanisms as reduction of inoculum; diseases with high market tolerance to symptoms; uses as reduction of pesticides residues
- Avoid diseases where even chemicals often fail (with few exception)
- Talk with experts (researchers, advisors)

## Define your roadmap and follow it



The game of Goose (giuoco dell'oca) was Invented by Francesco de Medici in XVI century



## Define a roadmap and follow it



#### The game of Goose (giuoco dell'oca)

Roll the dice and move your counter one square for each spot on the dice

 If your counter lands on a Goose square you can move again the number of spots of your original throw (waive a test)

 If you land on the Inn, miss a turn (additional data are requested)

- If you land on the Prison, miss three turns (more additional are requested)
- If you land on Dead, go back to square 1 and start all over again! (did you choose the wrong strain?)









